Glutathione content as a potential mediator of the vulnerability of cultured fetal cortical neurons to ethanol-induced apoptosis.
نویسندگان
چکیده
Ethanol ingestion during pregnancy elicits damage to the developing brain, some of which appears to result from enhanced apoptotic death of neurons. A consistent characteristic of this phenomenon is a highly differing sensitivity to ethanol within specific neuron populations. One possible explanation for this "selective vulnerability" could be cellular variations in glutathione (GSH) homeostasis. Prior studies have illustrated that ethanol elicits apoptotic death of neurons in the developing brain, that oxidative stress may be an underlying mechanism, and that GSH can be neuroprotective. In the present study, both multiphoton microscopy and flow cytometry demonstrate a striking heterogeneity in GSH content within cortical neuron populations. Ethanol differentially elicits apoptotic death and oxidative stress in these neurons. When neuron GSH content is reduced by treatment with butathione sulfoxamine, the ethanol-mediated enhancement of reactive oxygen species is exacerbated. Sorting of cells into high- and low-GSH populations further exemplifies ethanol-mediated oxidative stress whereby apoptotic indices are preferentially elevated in the low-GSH population. Western blot analysis of the low-GSH subpopulations shows higher ethanol-mediated expression of active caspase 3 and 24-kDa PARP-1 fragments compared with the high-GSH subpopulation. In addition, neuronal content of 4-hydroxynonenal adducts is higher in low-GSH neurons in response to ethanol. These studies suggest that GSH content is an important predictor of neuronal sensitivity to ethanol-mediated oxidative stress and subsequent cell death. The data support the proposition that the differences in proapoptotic responses to ethanol within specific neuron populations reflect a heterogeneity of neuron GSH content.
منابع مشابه
Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...
متن کاملP 23: Apoptosis Following Cortical Spreading Depression in Juvenile Rats
Introduction: Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo,...
متن کاملEffect of Thymoquinone and Nigella sativa Seeds Oil on Ethanol Toxicity in Rats
Background: In this study, the protective effect of thymoquinone (TQ) and Nigella sativa seeds oil (NSO) was evaluated against oxidative damages induced by ethanol in rats. Methods: Animals were treated with ethanol 40% daily by gavages once a day for 4 weeks. NSO and TQ were injected intraperitoneal once a day for 4 weeks. The histopathological examination of liver, kidney, brain and heart was...
متن کاملCyclophosphamide-Induced Lipid Peroxidation and Changes in Cholesterol Content: Protective Role of Reduced Glutathione
The study was designed with an aim to evaluate the protective effects of reduced glutathione on cyclophosphamide induced lipid peroxidation and also changes in cholesterol content. Goat liver and white New Zealand rabbit were used as lipid source for the models. Lipid peroxidation study was performed by measuring the malondial...
متن کاملBerberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
Objective(s): Neurodegenerative diseases have been associated with glutamatergic dysfunction. Berberine, an isoquinoline alkaloid broadly present in different medicinal herbs, has been reported to have neuroprotective effect. In the present study, the effects of berberine against glutamate-induced oxidative damage and apoptosis were investigated. Materials and Methods: The cultured PC12 and N2a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2008